
PERSPECTIVE
www.advmat.de

Maximizing Triboelectric Nanogenerators by
Physics-Informed AI Inverse Design

Pengcheng Jiao, Zhong Lin Wang,* and Amir H. Alavi*

Triboelectric nanogenerators offer an environmentally friendly approach to
harvesting energy from mechanical excitations. This capability has made
them widely sought-after as an efficient, renewable, and sustainable energy
source, with the potential to decrease reliance on traditional fossil fuels.
However, developing triboelectric nanogenerators with specific output
remains a challenge mainly due to the uncertainties associated with their
complex designs for real-life applications. Artificial intelligence-enabled
inverse design is a powerful tool to realize performance-oriented triboelectric
nanogenerators. This is an emerging scientific direction that can address the
concerns about the design and optimization of triboelectric nanogenerators
leading to a next generation nanogenerator systems. This perspective paper
aims at reviewing the principal analysis of triboelectricity, summarizing the
current challenges of designing and optimizing triboelectric nanogenerators,
and highlighting the physics-informed inverse design strategies to develop
triboelectric nanogenerators. Strategic inverse design is particularly discussed
in the contexts of expanding the four-mode analytical models by
physics-informed artificial intelligence, discovering new conductive and
dielectric materials, and optimizing contact interfaces. Various potential
development levels of artificial intelligence-enhanced triboelectric
nanogenerators are delineated. Finally, the potential of physics-informed
artificial intelligence inverse design to propel triboelectric nanogenerators
from prototypes to multifunctional intelligent systems for real-life applications
is discussed.
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1. Introduction

Triboelectric nanogenerators (TENGs) are
devices that can convert mechanical excita-
tion into electrical signals via triboelectrifi-
cation effect and electrostatic induction.[1]

The combined capabilities of renewable
energy generation, sustainability, and self-
powering, coupled with the potential for
widespread integration, have driven signifi-
cant interest in TENGs over the past decade.
TENGs have been extensively investigated
for harvesting energy from various re-
sources ranging from large-scale excitations
induced by wind and ocean waves to subtle
mechanical energy generated by heartbeat
and breathing from life activities.[2,3] Elec-
trical signal analysis has recently directed
TENGs to the other main domain of ac-
tive sensing such as microscale biocompat-
ible electronics and ultra-flexibly multiscale
sensors in biomedical and bioengineering
applications.[4]

Contact electrification between solid–
solid cases is typically characterized by elec-
tron transfer, which can be explained by, for
example, the surface states model for di-
electric materials and Fermi level for metal.
Two atoms are likely to attract each other
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Figure 1. Contact electrification and triboelectrification. Two atoms are likely to a) attract each other when the distance between the two materials is
larger than the bonding length, and b) repulse when the distance is smaller than the length. c) Strong electron cloud overlap occurs between the atoms
when the atoms are adequately close and eventually contact, which results in the lowered potential barrier and eventually the electron transition.

when the distance of the two materials is larger than the
bonding length, as shown in Figure 1a. Figure 1b displays
the contact electrification exists in the repulsive force region
between the interaction potential of atoms when the atomic
distance is smaller than the bonding length. When the atoms
are adequately close and eventually contact, a strong electron
cloud overlap between the atoms results in the lowered potential
barrier and thus the electron transition, as shown in Figure 1c.
Due to the coupling effect of contact electrification and electro-
static induction, triboelectrification has been used to convert
arbitrarily distributed mechanical energy into electric energy,
such as TENGs with the merits of, through certain design, high
energy efficiency, various material options, simple structures,
low cost, etc.[2]

Compared with their counterparts in energy harvesting and
sensing, TENGs have exhibited several advantages including
wide material options, low cost, and high energy conversion
efficiency.[1] To improve the electrical performance of TENGs,
recent research trends have been shifted to the optimization of
TENGs in three perspectives, that is, composition alteration of
friction materials, promotion of dielectric properties, and opti-

mization of interfacial microstructures.[5–7] Research efforts have
been dedicated to determining the compositions of friction ma-
terials for advanced electrical properties of high conductivity and
low resistance such as conductive elastomers.[8] Advanced ma-
terial technologies have been used to tailor dielectric materials
with tunable properties in triboelectric pairs such as computer-
aided material discovery.[9] More recently, the periodic assembly
essence of mechanical metamaterials has been applied to opti-
mize the interfacial microstructures in TENGs.[10] Due to the
need for high performance and well effectiveness for real-life ap-
plication scenarios, however, TENGs have been facing the chal-
lenge of optimizing for specific output mainly due to the uncer-
tainties associated with their complex structures.

Recently, there has been a growing interest in deploying ar-
tificial intelligence (AI) tools for enhancing the performance of
TENGs.[11] However, the entire field of AI-enhanced TENGs is
still in its infancy. Figure 2 demonstrates the tree of research
for TENGs in terms of integration with AI paradigms, includ-
ing standard AI, generative AI (GAI), and physics-informed
AI. In general, AI-maximized TENGs fall into the four cate-
gories of AI maintenance consisted of monitored and predictive
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Figure 2. Tree of research for future development of TENGs with AI, generative AI, and physics-informed AI inverse design. The AI approach to TENGs
design can expand their utility in monitoring and maintenance, accelerate their miniaturization and integration for various engineering and medical
applications, and enhance the material research and discovery for more optimized designs.

maintenances, AI integration consisted of process sensor data
and optimized performance, GAI integration consisted of dis-
cover new materials and optimize energy harvesting, and
physics-informed AI consisted of accelerate material design, in-
corporate physical laws, enhance data efficiency, improve gener-
alization, and simulate response. First of all, the limited stud-
ies with focus on using standard AI methods (e.g., neural net-
works (NN), deep learning DL) merely target optimizing or pre-
dicting the electrical output of TENGs.[11,12] Second, the standard
AI methods can have broad applications in other areas including
processing sensory data generated by TENGs, monitored mainte-
nance, or predictive maintenance. Within the realm of AI, third,
the GAI methods (e.g., generative adversarial networks (GANs),
variational autoencoders) are other emerging tools with outstand-
ing ability to learn complex patterns in the data and generate
new contents, properties, or structures.[13] The GAI algorithms
are particularly strong for inverse design of material systems.[13]

Despite the significant capacity of the GAI methods in enhancing
TENG systems in various aspects, their substantive application in
this area is conspicuous by its absence. The major challenge with
the implementation of AI and GAI methods is that they often re-
quire a large amount of data for calibration. Moreover, since they
rely solely on data, there are concerns about the uncertainty asso-

ciated with these models. To address these challenges, fourthly,
physics-informed AI has been proven to be an efficient approach
with various applications ranging from discovering advanced ma-
terials to optics.[14,15] Also, strategic inverse design has been pro-
posed as a data-driven method for performance-oriented mate-
rial response in recent years.[16] By incorporating domain-specific
knowledge and constraints from physical laws into the AI sim-
ulation process, the physics-informed AI models can learn and
extrapolate information from limited data more effectively. This
capability makes them attractive approaches in various domains
where data might be scarce or expensive to obtain. For the TENG
systems, a physics-informed AI inverse design strategy could be
the key to addressing the challenges associated with design and
optimization, opening horizons for exploring new generations of
TENGs.

This perspective overviews the working principles of TENGs,
summarizes the current challenges of designing and optimiz-
ing TENGs, and presents insights into the strategic inverse
design method to obtain physics-informed and performance-
oriented TENGs systems. We particularly discuss the inverse
design strategies in the context of the AI-based methods for
expanding the principles from analytical modeling to physics-
informed AI, discovering frictionally conductive compositions,
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Figure 3. Analytical models of TENGs and technical challenges ahead of their design and optimization. a)Typical theoretical expressions of the lateral
sliding,[18] contact-separation,[19] freestanding,[20] and single electrode[21] models. b) Existing AI models to predict the electrical performance of four
modes of TENGs including lateral sliding,[12] contact-separation,[11] freestanding mode,[22] and single electrode[23] modes.

selecting ideally dielectric materials, and designing contact inter-
faces. Eventually, we discuss the strategic inverse design toward
the next-generation integrated TENG systems with the electrical
performance that meets the specific application conditions and
requirements.

2. Current Progress and Limitations of Analytical
Models of TENGs

TENGs have been reported to have the unique feature of high
voltage and low current due to their high internal resistance.
For instance, the voltage output can easily reach hundreds to
thousands of volts while the current is typically at the scale
of microamperes. Thus, TENGs have emerged as ideal high-
voltage sources.[17] To investigate the electrical performance of
TENGs with different working principles, four-mode of the lat-
eral sliding,[18] contact-separation,[19] freestanding,[20] and sin-
gle electrode[21] analytical models have been developed based
on the fundamental theory of Maxwell’s displacement current
(Figure 3a). The displacement current is mainly caused by the
reasons of time-varying electric field, time-varying movements of
atomic bound charges, and polarization of the dielectric. Accord-
ing to the four-mode analytical models, the open-circuit voltage
VOC is affected by two types of parameters, including the material

properties such as the surface charge density 𝜎 and the structural
design such as the relative displacement changing with excitation
time x(t). Thus, the electrical performance of TENGs can be tai-
lored by these material and structural parameters.

Various design and fabrication strategies have been proposed
to optimize the electrical performance of TENGs. In material
selection, for example, flexible contact surfaces are chosen as
the triboelectric materials to reduce the surface wear of TENGs
resulting in triboelectrification.[24] Dielectric elastomers with
low stiffness and well stretchability are bonded with flexible
electrodes on the top and bottom to form dielectric elastomer
actuators.[25] In structural design, continuous charge replenish-
ment is designed in TENGs to reduce the surface charge dis-
sipation into the air.[26] Intermediate layers are designed as the
blocking or charge storage layers between the triboelectric mate-
rials and electrode layers to prevent the surface electron drift to
the bottom electrode under the action of electric field.[27] How-
ever, these design and fabrication strategies are neglected in the
analytical models due to the assumed simplifications.[17] Table 1
summarizes the existing four-mode analytical models of TENGs
with the typical design variables, simplifications, and application
scenarios.

Figure 3b displays the existing AI models to predict the open-
circuit voltage generated based on four operational modes of

Adv. Mater. 2024, 36, 2308505 © 2023 Wiley-VCH GmbH2308505 (4 of 17)

 15214095, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202308505 by G
eorgia Institute O

f T
echnology, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Table 1. Summary of the existing analytical models with design variables, main simplifications, and application scenarios.

Mode Working
principles

Structural
characteristics

Material selections External excitations Variables Simplifications Application
scenarios

Refs.

Contact-
separation

During contact-
separation
process,
potential
changes
between two
electrodes,
and external
current flow
are created to
balance the
potential
difference

• Relative
displacement
between
contact
surfaces x

• Contact
surface area

• Overall size

• Surface charge
density 𝜎

• Vacuum dielectric
constant 𝜖0

• Applied force
• Displacement

distance
• Triggering

frequency

• Conductive
materials with
different 𝜎 and 𝜖0

• Structural design
to control the
displacement

• Uniform
displacement

• Surface wear is
negligible

• Surface charge
dissipation is
negligible

• Performance
degradation by
fatigue is
negligible

• Spacer
• Arch
• Spring-based

contact-
separation
structures

• Multi-layer
contact-
separation

• Microporous-
nanoparticle
composites

[2,17,28–33]

Single
electrode

External
mechanical
movement
causes gap
between two
friction
surfaces, and
potential
differences are
created
between two
electrodes

• Gap between
two
triboelectric
materials x

• Board length l
• Gap between

main
electrode and
reference
electrode g

• Charge density 𝜎
• Vacuum dielectric

constant 𝜖0

• Applied force
• Displacement

distance

• Electrode spacing
• Area size

• Neglect effect of
thickness and
simplify to a 2D
model

• Frictional charges
are uniformly
distributed on
surfaces of
dielectric layers

• Plane sliding
structure

[2,28,31,33]

Lateral
sliding

• Utilize relative
displacement
parallel to
contact
interfaces,
and potential
changes
between two
electrodes

• Electrical
output is
generated
through
external circuit

• Lateral
separation
distance x

• Thickness d
• Board length l

• Surface charge
density 𝜎

• Relative
permittivity 𝜖1

• External force in
horizontal
direction of
devices

• Sliding distance • Distance between
positively and
negatively
charged surfaces
is negligible

• Vertical distance
between
electrode layer
and surface of
friction charge is
negligible

• Thickness effect
is negligible

• Decay of friction
charge with time
is negligible

• Edge effect is
negligible

• Plane sliding
structure

• Grid-like
electrode
structure

• Rotating disc
structure

• Rotating
cylindrical
structure

[2,21,28,29,32,33]

Freestanding Potential
difference is
generated
when
independent
layers move
from one
electrode to
another

• Dielectric
plate
thickness d

• Gap angle 𝜃g
• Center

angle 𝜃0
• Number of

grating units
N

• Inner and
outer radius
of TENG r1

and r2

• Relative dielectric
constant 𝜖r1

• Surface charge
density 𝜎

• Rotation angle
• Rotation rate

• Rotation rate
• Number of

grating units

• Negative
tribo-charges
uniformly
distribute on
dielectric
surfaces

• Influence of
contact force
between
triboelectric
surfaces is
negligible

• Electrode gap is
negligible

• Rotating wheel
structure

• Grid-like
electrode
structure

[2,28,31,33,20,18]
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TENGs. In particular, Jiang et al.[12] developed a deep neutral net-
work (DNN) model to predict the output performance of the lat-
eral sliding TENGs with different design conditions. A theoret-
ical model integrated with an AI optimization model (grey wolf
optimization method) was reported by Khorsand et al.[11] to char-
acterize the output of the rotary TENGs in the contact-separation
mode under various kinematics and geometric conditions. Wang
et al.[22] presented a supported vector regression (SVR) model to
optimize the average power of the cylindrical grating-structured
TENGs in the freestanding mode.[22] A DL model was devel-
oped to detect and classify the microplastics in the liquid−solid
TENG.[23] Satisfactory prediction accuracies were reported in all
these existing studies.

3. Technical Challenges in Design and
Optimization of TENGs

Electrical performance of TENGs is affected by factors at the ma-
terial and structure level. The former consists of the factors re-
lated to conductive materials (e.g., triboelectric polarity and sur-
face charge density) and dielectric materials (e.g., resistance). The
structure level factors are related to contact interfaces such as
surface roughness and deformation morphology.[4] Design and
optimization of TENGs demand controlling the factors in these
two categories. Although conductive materials can be optimized
by mixtures, there are major difficulties in obtaining the optimal
triboelectric polarity and surface charge density due to the uncer-
tainty of the key factors in compositions.[34,35] In addition, several
technical challenges still need to be addressed to expand the im-
plementation of TENGs. These challenges include ensuring their
biocompatibility, enabling their operation in extreme conditions
(such as high temperature, humidity, moisture, and varying ex-
citation amplitudes and frequencies), and addressing the lack of
sufficient experimental data in these domains.

Figure 4 depicts the technical challenges in TENGs. Figure 4a
demonstrates the technical challenges of TENGs in biocompati-
bility, performance, and data amount. This figure illustrates the
biocompatibility and applicability of the selected triboelectric ma-
terials of wool, polypropylene (PP), silk, nylon, natural rubber
(NR), aluminum (Al), silicon (Si), quartz, sulfur, polyethylene
(PE), polytetrafluoroethylene, polydimethylsiloxane (PDMS) and
polyvinyl chloride (PVC). The materials are particularly com-
pared in terms of the triboelectric factor 𝜉, where the origin factor
is 𝜉 = 0 for metals or superconductors as the Seebeck coefficient
is zero. Triboelectric materials are distributed along the positive
and negative 𝜉. Figure 4a also depicts how typical triboelectric
materials (i.e., Al, PDMS, and nylon) are analyzed with respect
to their performance under extreme operation conditions such as
high temperature, humidity, excitation amplitude, or frequency.
High corrosivity, high responsiveness, low robustness, and low
recovery have been reported as the main issues of the TENGs
fabricated by these materials. These issues result in the loss of
the devices’ functionalities. Furthermore, the scarcity of data is
a concern found in the entire procedures of developing AI mod-
els, including the insufficiency, error, noise, and complexity in
data processing, inefficiency in data analysis, and inaccuracy and
imprecision in data results. Figure 4b shows the uncertainty in
characterizing the key factors in composition the lack of quan-
titative relationships by traditional statistical tools, and the diffi-

culty in optimizing conductive and dielectric materials by compo-
sition mixtures while controlling structural response by design of
contact interfaces. Resistance of dielectric materials can be crit-
ically affected by mixtures, but it is difficult to identify the key
factors in compositions. The four-mode analytical models have
been proposed to establish the quantitative relationships between
the key factors (i.e., input variables) and electrical performance
(i.e., output variables). However, intuitive guideline is still insuf-
ficient to achieve desirable electrical response as the complex na-
ture of TENGs results in the difficulty of characterizing all the
factors and accurately obtaining the relationships only using tra-
ditionally statistical tools. Addressing these technical challenges,
AI-based performance prediction and optimization have recently
been reported to tailoring the micro-compositions of functional
materials to obtain desirably electrical response,[34] and unveil the
relationships between the inputs and outputs without quantita-
tively modeling.[35,36] Table 2 summarizes the existing AI models
developed for the performance prediction and output data analy-
sis of four modes of TENGs.[12,22,23,37–45]

4. Inverse Design of TENGs by Physics-Informed
AI

The four-mode analytical models aim at unveiling the mech-
anism and key parameters of TENGs to improve their perfor-
mance by determining advanced conductive and dielectric ma-
terials, designing optimal structures, and obtaining standard-
ized electrical output. The analytical models are, however, in-
adequate due to the highly complex nature of material discov-
ery and structural design. AI has been used as a powerful tool
to expand the mechanism of triboelectrification and address the
theoretical issues of TENGs. More recently, physics-informed AI
and AI inverse design models have been reported for various ap-
plications in electrical energy fields.[46–48] For example, physics-
informed AI models were developed for photovoltaic and solar
energy,[49–51] wind energy,[52,53] power flow[54,55] and power sys-
tem management.[56,57] Figure 5 illustrates the principles and
procedures of physics-informed AI inverse design for TENG sys-
tems, encompassing theoretical analysis, the selection of conduc-
tive and dielectric materials, and the design of the contact inter-
face. Table 3 compares the existing physics-informed AI models
and AI inverse design models with other AI models in terms
of the principle and mechanism, characteristics, application sce-
nario, and applicability in TENGs.[12,58–65]

4.1. From Analytical Modeling to Physics-Informed AI

Four-mode analytical models have been developed to investigate
the electrical outputs (e.g., voltage and charge) of TENGs in var-
ious application scenarios.[66] The four-mode models are lim-
ited due to their simplifications. For instance, they rely on rel-
ative displacement change x(t) that is eventually distributed over
time.[67] Therefore, most TENGs are qualitatively designed based
on researcher experience or preliminary experiments. AI tools
have recently been applied to design TENGs with optimal elec-
trical performance, for example, electro-physiological sensors,[68]

TENG arrays,[69] self-powered sensor networks,[70] etc. However,
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Figure 4. Technical challenges in TENGs. a) Technical challenges in biocompatibility, performance, and data amount. The scarcity of biocompatible tri-
boelectric materials is especially significant when designing TENG-based implants that necessitate specific mechanical properties, such as high stiffness
or softness. Ensuring the performance reliability and robustness of current triboelectric materials under extreme operational conditions is a crucial area
for further research. The dearth of adequate data at every stage of developing resilient AI models for TENG-based systems continues to be a pressing
concern. b) Uncertainty in characterizing the key factors in composition and the lack of quantitative relationships by traditional statistical tools, and the
difficulty in optimizing conductive and dielectric materials by composition mixtures while controlling structural response by design of contact interfaces
(Reproduced with permission [34-36], 2023, Wiley).[34–36]

the large amount of data required for calibrating the AI models
has severely limited their development. This is particularly a chal-
lenge for the AI algorithms that significantly rely on data such as
NN and DL. Given the expenses of experimentally expanding the
database, numerical simulations have been used to quantitatively
investigate the electrical response and develop adequate data for
TENGs.[71]

To address these challenges and improve the uncertainty as-
sociated with AI model, realizing physics-informed AI com-
bining the four-mode principles with AI prediction models is
a viable approach. Physics-informed AI models have been re-
ported to analyze complexly analytical equations, such as the

physics-informed NN models for solving different nonlinearly
partial differential equations[72–76] and their applications in struc-
tural identification,[77] nanoscale heat transport[78] and Motion
estimation of moored buoys.[79] From the analytical model-
ing, the AI prediction to the physics-informed AI, electrically-
tunable TENGs can be created by strategic inverse design to con-
trol the electrical performance and, more interestingly, to cus-
tomize components that can be integrated in devices and as-
sembled in intelligent systems.[2,80] Figure 5a shows the design
path of TENGs from analytical modeling for the triboelectrifi-
cation effect, AI-enabled prediction for TENG components to
physics-informed inverse design for integrated TENG devices

Adv. Mater. 2024, 36, 2308505 © 2023 Wiley-VCH GmbH2308505 (7 of 17)
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Table 2. Existing AI models developed for the performance prediction and output data analysis of TENGs.[12,22,23,37–45]

Performance prediction Data analysis

Contact-separation • K nearest neighbor (KNN) and NN
• KNN accuracy of 97.1%
• NN accuracy of 97%
• KNN provides better results than other ML models[37]

• Hierarchical NN
• Real-time neuromorphic computing
• Accuracy of 92.11%[38]

• Multilayer deep belief network (DBN)
• Analyze useful information from raw electronic signals
• Generate keystroke dynamics identification results
• High identification accuracy, stable, and reliable

performance[39]

Single electrode • Convolutional neural network (CNN)
• Liquid–solid TENGs
• Detect microplastic particles in water
• Accuracy of 86.7%[23]

• Particles-laden droplet-driven TENGs
• CNN to identify particle types
• Accuracy >95%[40]

• Classification coding and recurrent neural network
• Sheath-core triboelectric nanogenerators (SC-TENGs)
• Identify materials in real-time
• Accuracy of 96.5%[41]

Lateral sliding • DNN
• Predict output power with structures of TENGs
• Consistent with experiments and simulations[12]

• Co-evolutionary particle swarm optimization and
physical solver

• Optimize key structural parameters (i.e., contact area,
electric film thickness, and external resistance)

• Optimize main characteristics of TENGs[42]

• 1D CNN
• Detect various volatile organic compounds species
• Accuracy of 54.286%[43]

Freestanding • SVR
• Investigate the influence of rotor-stator gap and

parasitic capacitance on grating-structured TENGs
• Obtain optimal grating number and average power[22]

• Long and short-term memory (LSTM)
• Cantilever-structure freestanding TENGs
• LSTM as a cantilever defect identification model for

electric output of TENGs
• Accuracy of 98.6%[44]

• Continuous wavelet transform and CNN
• Classify and identify typical faults of rotating machinery
• Accuracy of 90%[45]

and assembled TENG systems. Figure 6a shows the framework
of the physics-informed NN (PINN(t;𝜃)) for Maxwell’s equa-
tions, where 𝜃 denotes the set of trainable weights w and bi-
ases b while Γ is a nonlinear activation function.[58] Specify
the measurement data {ti, Bi, Ei} for B and E, and the resid-
ual points {tj} for the PDE. The loss L function can be speci-
fied by summing the weighted losses of the data and PDE, and
the PINN model can be trained to find the best parameters by
minimizing L.

4.2. Material Discovery for Frictionally Conductive Materials

AI has been playing a significant role in material discovery ever
since its debut as AI can capture the subtle relationships be-
tween material compositions and properties without require-
ments on assuming prior form of the relationships. AI has been
used to discover frictionally conductive materials with ideal con-
ductive properties.[4,28,84] Frictionally conductive materials, typi-
cally found in synthetic compositions, have been used in TENGs
due to the triboelectrically negative characteristics required to
transfer charges. These compositions tend to bind electrons and
thus seize electrons from others under contact friction. To im-
prove the friction materials in TENGs, research efforts have been

dedicated to finding the compositions with optimal triboelectric
capability.[85]

To this end, physic-informed AI inverse design can be
a powerful tool to characterize material properties,[86–88] ob-
taining advanced compositions by varying the compositions
in their functional chemical groups (e.g., sulfur groups, hy-
droxyl groups, amine groups, etc.), material components, and
functional fillers.[89] The electron-donating capabilities and mi-
crostructures can be tailored by varying the component ratios of
different friction layers, which will lead to promising improve-
ment of transferring charges for the friction materials with the
same contact friction conditions. For example, physics-informed
AI and AI inverse design models were reported on the functional
materials of nanophotonics,[90] thermal materials,[91] and electro-
magnetic materials[92] with enhanced performance, and the com-
posites of multi-materials[93] and heterogeneous materials.[94]

Materials reliability, robustness, and fatigue resistance were
improved with less defects in additive manufacturing.[95–98]

Figure 5b demonstrates the application procedures of inverse de-
sign by physics-informed AI to determine the frictionally con-
ductive materials with programmable triboelectric properties.
Figure 6b shows the framework of the physics-informed DL for
solving an elasticity problem in conductive materials.[81] The
DNN of displacement takes the position at each material point

Adv. Mater. 2024, 36, 2308505 © 2023 Wiley-VCH GmbH2308505 (8 of 17)
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Figure 5. Strategic inverse design of TENGs by physics-informed AI. a) Design path of TENGs from analytical modeling for the triboelectrification
effect, AI-enabled prediction for TENG components to physics-informed inverse design for integrated devices and assembled systems. b) Discovery of
frictionally conductive materials with programmable triboelectric properties by varying functional chemical groups, material components, and functional
fillers, and c) selection of highly dielectric materials by combining nanowires or nanoparticles with well dielectric constants into polymer substrates
using strategic inverse design. d) Inverse design on the contact interfaces of TENGs by physical patterning based on mechanical metamaterials from
the structural perspective.

and outputs its displacements uy(x,y). The predicted strains are
determined based on the measured and predicted displacements.
The predicted stress tensor can then be calculated with the en-
coded constitutive relations based on the strains and Young’s
modulus.

4.3. Material Selection for Dielectric Layers

Dielectric materials play a key role in TENGs. Poor dielectric
properties in friction layers will severely affect the charge accu-
mulation due to high charge dissipation, which results in the in-
sufficiency of potential difference between two friction layers for
certain current output.[99] Recent studies have been conducted to
improve the electrical performance of TENGs by obtaining the di-
electric materials with ideal properties, for example, mixing high

dielectric nanomaterials,[100] changing hydrophilicity,[101] or po-
larizing dielectric materials.[102]

Strategic inverse design by physics-informed AI can be used
to select the materials with ideal dielectric properties. Figure 5c
displays highly dielectric materials designed by combining
nanowires or nanoparticles with well dielectric constants into
polymer substrates. For example, BaTiO3 was reported with pre-
defined dielectric properties based on nanomaterials and silver
nanomaterials.[103] Inverse design can also be conducted to elim-
inate the hydrophilicity of dielectric materials as hydrophilic ma-
terials with well water absorption ability are likely to reduce
the surface charges due to the conductivity of water molecules.
In addition, polarization can be inversely carried out to obtain
the dielectric materials with tunable permittivity as electrical in-
sulators can be polarized in electrical fields. For example, in-
terfacial, ion, and molecular polarization can be used to pro-
mote the properties of dielectric materials, and thus improve

Adv. Mater. 2024, 36, 2308505 © 2023 Wiley-VCH GmbH2308505 (9 of 17)
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Table 3. Comparison of the existing physics-informed AI models and AI inverse design models with other AI models on the principle and mechanism,
characteristics, application scenario and applicability in TENGs.[12,58–65]

Principle and mechanism Characteristics Application scenario Applicability in TENGs Refs.

Physics-
informed AI
models

• Fundamental AI systems
• Introduce appropriate

observational, inductive,
or learning biases

• Integrate seamlessly
data and mathematical
physics models

• Incomplete models and
imperfect data

• Strong generalization in
small data regime

• Uncertainty
quantification

• Biophysics
• Plasma dynamics
• High-dimensional

problems
• Quantum chemistry
• Material sciences
• Molecular simulations
• Geophysics
• Manufacturing systems

• Not yet been applied to
TENGs

• Use physical relations to
address the lack of data

• Design and
optimization of various
structures with complex
microstructures or
surfaces

• Identify and characterize
material properties

• Improve output
performance

[58,59]

AI inverse design
models

• Basic NN systems
• Evolutionary approaches
• Gradient-based

approaches

• Data-driven manner for
targeted design

• Multidimensional
design space
exploration

• High-speed and
scalability

• Functional materials
• Nano-photonics
• Molecular biology
• Multiphysics
• Robotics and

manufacturing
• Biomedical engineering

• Not yet been applied to
TENGs

• Performance-oriented
design and optimization

• Design structures with
complex
microstructures or
surfaces

• Identify and characterize
material properties

• Improve output
performance

[12, 60–62]

Other AI models • DL
• GAN
• Reinforcement learning

(RL)
• Transfer learning (TL)
• Bayesian optimization

(BO)

• Learn from extensive
data volumes

• Excellent flexibility and
adaptability

• Depend on iterative
feedback loop

• Trade-offs and
uncertainty

• Materials design and
discovery

• Computer graphics
• Robotics and

autonomous systems
• Industrial optimization

• Various AI models in
TENGs

• Predict and optimize
performance

• Analyze and address big
data from sensing

• Improve output
performance

[63–65]

the electrical performance of TENGs.[104] Figure 6c shows the
flowchart of the physics-informed AI models to predict the non-
linear composition-structure relations of the dielectric materi-
als of oxide glass.[82] The statistical mechanics (SM), multilayer
perceptron NN (MLP-NN), and hybrid SM and MLP-NN models
were developed, where the SM and MLP-NN models were trained
on the experimental data of composition-structure for the glass,
and the hybrid model was trained on both the experimental data
and statistical mechanics results. Model predictions of Qn frac-
tions in the glass were presented, where Qn is the function of
Na2O concentration in the Na2O-SiO2 glass system.

4.4. Structural Design and Optimization for Contact Interfaces

Structural design and geometric optimization are important fac-
tors for tunning the electrical performance of TENGs.[105] Given
the remarkable interest in energy harvesting devices in recent
years, various TENGs have been used in the application scenar-
ios with different types of external excitations.[106] Due to the
prompt development of additive manufacturing and other fabri-
cation technologies, structural design is likely to provide higher

possibility to tailor TENGs compared with the strategies in the
material perspective (i.e., design of conductive and dielectric ma-
terials). On the other hand, high structural possibility (i.e., struc-
tural complexity) results in the difficulty of obtaining the most
effective structures of TENGs with the optimal parameters.

The advantages of AI in performance prediction lead to its
applications in structural design and geometric optimization of
TENGs.[107] Different from the most current studies focused
on the overall structures, an emerging direction of strategic in-
verse design from structural perspective is on the contact in-
terfaces of TENGs. For example, physics-informed NN models
were developed to predict the structural instability,[108] design
the key structural parameters,[109,110] and optimize the structural
response.[111–113] Interfacial inverse design can be conducted on
the contact surfaces of TENGs by physical patterning such as
designing various artificially localized morphologies. For exam-
ple, mechanical metamaterials, manmade structural materials
assembled by numerous microstructures in a periodic manner,
have recently been applied in TENGs to promote the electri-
cal performance due to their structural programmability.[11,114,115]

Figure 5d demonstrates the inverse design on the con-
tact interfaces of TENGs by physical patterning based on

Adv. Mater. 2024, 36, 2308505 © 2023 Wiley-VCH GmbH2308505 (10 of 17)
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Figure 6. Comparison of the existing physics-informed AI and AI inverse design models. a) Framework of a physics-informed NN (PINN(t;𝜃)) for
Maxwell’s equations in theoretical analysis.[58] b) Framework of the physics-informed DL for solving an elasticity problem in conductive materials.[81] c)
Flowchart of the physics-informed ML models to predict the nonlinear composition-structure relations of the dielectric materials of oxide glass, and the
predictions of Qn fractions in the glass.[82] d) Framework of the physics-informed multi-LSTM networks model for metamodeling of nonlinear structural
systems with scarce data.[83]

mechanical metamaterials. As a consequence, inverse design by
physics-informed AI to form the contact interfaces of the con-
ductive and dielectric materials is envisioned as an efficient way
to improve the triboelectric effect and maximize the electrical
performance of TENGs. Figure 6d shows the framework of the
physics-informed multi-long and short-term memory (LSTM)
networks model for metamodeling of nonlinear structural sys-
tems with scarce data.[83] The physics-informed multi-LSTM net-
works model was developed with m LSTM layers and multi-
ple fully-connected layers for sequence-to-sequence modeling.
Each LSTM layer contained a suite of LSTM cells that were
similar to the neural node in classical NNs, containing an in-
dependent set of weights and biases shared across the entire
temporal space within the layer. Table 4 summarizes the ex-
isting physics-informed AI and AI inverse design models with
respect to the algorithm, advantage and disadvantage of the
theoretical analysis, dielectric material selection, and structural
design.[11,12,41,42,81–83,90,116–120]

5. Strategic Inverse Design toward Integrated
TENG Devices

Benefiting from the rapid development of TENGs during the last
decade, the research interest has shifted from unveiling the prin-
ciples (e.g., four-mode theories) and designing prototypes at the
early stage to obtaining TENG devices for various engineering

and medical applications. Instead of treating TENGs as the func-
tional parts attached or embedded into devices, studies have been
switched to directly integrating devices by the TENG components
with different functionalities.[106] These integrated TENG devices
are found with the advantages of well reliability, compatibility,
and more tunable performance. However, it is difficult to all-in-
one design integrated TENG devices that meet specific require-
ments in applications, especially given the fact that all TENG
components need to be considered from the material and struc-
tural perspectives simultaneously.[121,122]

Figure 7 illustrates the integrated TENG devices enabled by
AI-induced inverse design. Figure 7a displays the three types of
technological challenges that are found in strategic inverse de-
sign, including 1) insufficiency of data for AI modeling, 2) lack of
quantitative specification on performance requirements, and 3)
fabrication limitations such as manufacturing precision and per-
formance robustness. Figure 7b presents the potential solutions
for addressing the challenges. First of all, GAN algorithms have
been reported as a powerful tool to expand data for AI modeling.
Second, sensitivity analysis can be used to compare the domi-
nance of material, structural, and excitation factors, and identify
the key factors with the contributions exceeding the thresholds
of the output voltage and electrical power. Third, multiscale ad-
vanced technologies can be used to improve the imperfection in
fabrication, especially the technologies that have been rapidly de-
veloping such as nanoparticle building blocks or 3D printing.[123]

Adv. Mater. 2024, 36, 2308505 © 2023 Wiley-VCH GmbH2308505 (11 of 17)
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Table 4. Existing physics-informed AI and AI inverse design models with respect to the algorithm, advantage and disadvantage on the theoretical analysis,
dielectric material selection, and structural design.[11,12,41,42,81–83,90,116–120]

Physics-informed AI models AI inverse design models

Algorithm Advantage Disadvantage Algorithm Advantage Disadvantage

Theoretical
analysis

• Physics-informed
ML[116]

• Self-upgrade
without new
codes or
algorithms

• Batch data
sorting

• Require big data
and storage cost

• Calculation error
for new data

• Unable to
recognize
multiple choices

• Co-
evolutionary
particle
swarm
optimization
inverse
design
(CPSOID)[42]

• High accuracy • Complex and
indigestible
solving process

• Physics-informed
genetic
programming
(GP)[117,118]

• Suitable for
complex
optimization

• Analytical
solutions

• Optimized
results irrelevant
to initial
conditions

• Independent of
solution domains

• Well robustness

• Low convergence
rate and local
optimal ability

• Substantial
control variables

• GWO inverse
design
(GWOID)[11]

• High accuracy
and efficiency

• Complex
engineering
problems with
mixed partial
differential and
integral
equations

• Complex and
indigestible
solving process

Dielectric
material
selection

• Physics-informed
ML[119]

• Self-upgrades
without new
codes or
algorithms

• Batch data
sorting

• Big data
requirements and
storage costs

• Easy to produce
calculation errors
for new data

• Unable to
recognize
multiple choices

• DL inverse
design[90]

• Well learning
ability and
portability

• Wide coverage
• High ceiling

• Rely on
computational
power

• Heavy calculation
and
inconvenience

• Complex
algorithm design

• Physics-informed
DL[81]

• Great learning
ability and
portability

• Wide coverage
• High ceiling

• Rely on
computational
power

• Heavy calculation
and
inconvenience

• Complex
algorithm design

• Recurrent NN
inverse
design[41]

• Appropriate for
processing
sequence data

• Gradient
explosion and
disappearance

• Training difficulty
due to additional
video memory
space

• Unable to handle
long sequences if
using tanh and
relu

Structural
design

• Physics-informed
ML[82]

• Self-upgrades
without new code
or algorithm

• Batch data
sorting

• Big data
requirements and
storage costs

• Easy to produce
calculation errors
for new data

• Unable to
recognize
multiple choices

• DL inverse
design[120]

• Well learning
ability and
portability

• Wide coverage
• High ceiling

• Rely on
computational
power

• Heavy calculation
and
inconvenience

• Complex
algorithm design

• Physics-informed
DL[83]

• Well learning
ability and
portability

• Wide coverage
• High ceiling

• Rely on
computational
power

• Heavy calculation
and
inconvenience

• Complex
algorithm design

• DNN inverse
design[12]

• Extract richer
features from the
data

• Diminishing the
computational
complexity of
shallow NN

• Gradient
explosion and
disappearance

• Degradation of
weight matrix
leads to the
reduction of
effective flexibility
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Figure 7. Integrated TENG devices by AI-induced inverse design. a) Three types of challenges in strategic inverse design, that is, insufficiency of data,
lack of quantitative specification, and fabrication limitations. b) Potential solutions for addressing the data, quantitation, and fabrication challenges by
GAN series algorithms, sensitivity analysis, and multiscale advanced fabrication technologies, respectively. (Reproduced with permission [123], 2023,
Wiley)[123] c) Inverse design paradigms of TENGs from characterizing the key physical information, identifying the performance requirements, integrating
and developing physics-informed AI models with limited amount of data, to using the AI-based material and structural designs to improve the fabrication
and integration.
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Figure 8. Roadmap of next-generation multifunctional TENG systems. a) Development of TENGs that experience six technology maturity levels of
principle, design, prototype, component, device, and system, and b) key achievements and appearance of TENGs at the six levels. c) Roadmap of the
next-generation self-powered TENG systems with active intelligence.Reproduced with permission.[1,125–127] Copyright 2023, Wiley-VCH.

Addressing the technological challenges, integrated TENG de-
vices can be achieved, respectively, by principal analysis and the-
oretical modeling in multidisciplinary fields, expanding to estab-
lish numerical and experimental hybrid data pools, and combin-
ing different fabrication technologies such as additive manufac-
turing, photolithography, lasering-cutting, etc. Figure 7c displays
the inverse design paradigms that, first of all, characterizing the
key physical information (e.g., triboelectrification mechanism
and four-mode analytical models) of TENGs; second, identifying
the performance requirements (e.g., power supply); third, inte-
grating and developing physics-informed AI models with limited
amount of data; and fourthly, using the AI-based material and
structural designs to improve the fabrication and integration of
TENGs.

6. Roadmap for Next-Generation TENG Systems

Satisfying application requirements with performance orienta-
tion, TENGs typically experience six levels of development, that
is, principal analysis, material and structural design, prototype
characterization, component fabrication, device integration, and
system assembly (Figure 8a). Current TENGs are technologically
mature at the analysis, design, prototype, and component lev-
els. This has led to prosperous research accomplishments in-
cluding the four-mode analytical models at the analysis level (see
Table 1), the inverse design for new materials and optimal struc-
tures at the design level (see Figure 5), the specimen fabrica-
tion and testing at the prototype level, and the applications at
the component level such as energy harvesting and active sens-

ing. Achieving technological maturity demands substantial ef-
forts at the development levels (see Figure 8a). TENGs are un-
dertaking development at the device level while still in infancy
at the system level. At the device level, strategic inverse design
can be used to achieve predefined functionalities for TENG com-
ponents and effectively integrate them to form overall devices.
Eventually, TENG systems can be formed by assembling differ-
ent functional devices that are integrated by numerous TENG
components at the system level. Figure 8b further displays the
key achievements and appearance of TENGs at the six levels.
The overall development trend follows a relatively sharp region
for the technologically mature levels and, on the contrary, a satu-
rate region for the debut levels. Next-generation multifunctional
TENG systems, other than simply satisfying the performance
requirements in applications, target the intelligent characteris-
tics of self-powering and self-awareness. Self-awareness refers
to the intrinsic self-sensing ability of a system by which it can
collect information about the environment and become aware
of its condition, for example, self-diagnosability in miniaturized
medical implants.[124] It is known as the first step toward achiev-
ing a level of intelligence through which the system can acquire
and process knowledge, self-heal, compute, communicate, adapt,
and respond purposefully. Strategic inverse design at the next
stage is expected to realize self-powered multifunctional TENG
systems with tunable performance and intrinsic intelligence.
Figure 8c demonstrates the path toward realizing self-powered
intelligent TENG systems with broad applications ranging
from large civil infrastructure systems to miniaturized medical
implants.[1,116–119]
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7. Conclusions

TENGs have been characterized as high voltage and low current
energy harvesting systems. Designing TENGs with desirable out-
put for real-life applications has remained a challenge due to the
uncertainties associated with their complex nature in design. Re-
cent research focus has been dedicated to optimizing the electri-
cal output of TENGs from the material and structural perspec-
tives. In this perspective paper, we provided insights into the role
and future of AI-enabled inverse design as a powerful tool to re-
alize performance-oriented TENGs (i.e., TENGs with predefined
performance). Physics-informed method can be applied in the
AI inverse design of TENGs to reduce the dependence on data
by using quantitatively physical information. This is an emerg-
ing scientific direction that can potentially lead to realizing mul-
tifunctional TENG systems with intrinsic intelligence. Physics-
informed AI can be obtained by applying the four-mode analyt-
ical models to AI inverse design models. This approach can ad-
dress the challenges of TENGs in design and optimization by dis-
covering new conductive and dielectric materials and optimizing
contact interfaces. Physics-informed AI inverse design prompts
the six development levels of TENGs in principal analysis, mate-
rial and structural design, prototype characterization, component
fabrication, device integration, and system assembly; especially
for the last two development levels that are currently at the early
stage. Eventually, physics-informed AI inverse design is expected
to assist the significant switch of TENGs from prototypes to mul-
tifunctional intelligent systems that can be deployed in real-life
applications.
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